
Critical properties of a system of two molten polymers

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1978 J. Phys. A: Math. Gen. 11 L117

(http://iopscience.iop.org/0305-4470/11/5/006)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 18:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/11/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 11, No. 5 ,  1978. Printed in Great Britain 

LETTER TO THE EDITOR 

Critical properties of a system of two molten polymers 
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Received 31 January 1978 

Abstract. We consider a system of two molten polymers of different lengths NA and NB 
when the interaction is repulsive and leads to a segregation below a critical point T,. It is 
known that the critical behaviour is of the ‘mean field’ type if NA and NB are comparable. 
However if NB = 1 (one of the constituents reduced to a small molecule) it is known that 
the critical exponents are rather of king type. In the present Letter, the cross-over 
between these two behaviours is studied. 

We find a Flory-Huggins behaviour as soon as the small chains are themselves real 
polymers (i.e. N B  >> 1) independently of the ratio NJNB (>l). 

1. Introduction 

Demixing in a system of two molten polymers has often been observed (Krause 1972). 
The phase transition diagrams of such systems show a critical point. The Flory- 
Huggins theory has been extended for these systems (Flory 1953). It predicts ‘mean 
field’ exponents for the osmotic compressibility ,y and the correlation length 5 (Daoud 
1975) near the critical point. 

However it is known that in the vicinity of the critical point, the fluctuations play 
an important role and the mean field approach often fails. 

The purpose of this Letter is to estimate the temperature range AT* in which the 
mean field approach fails and to compare it with a characteristic temperature 8 - T, (8 
is the Flory temperature, T, is the critical temperature). De  Gennes (1977) has shown 
that for a system of polymer plus solvent AT* is comparable to 8 - Tc: this means that 
the mean field theory is not valid. On the other hand for two molten polymers with 
the same polymerisation index AT* is much smaller than 8 - T, (i.e. the mean field 
theory works). We want to discuss the cross-over between these limiting behaviours. 
Thus we consider a mixture of two molten polymers with different polymerisation 
indices N A  and NB. 

Our approach is based on a Ginzburg criterion and follows the lines of de Gennes 
(1977). Assuming first that the mean field (Flory-Huggins) calculation is qualitatively 
correct, we estimate the magnitude of the fluctuations near T, and then decide 
whether they are dangerous or not. 

2. Determination of the critical region AT* 

We consider a system of two polymers A and B whose respective polymerisation 
indices are N A  and NB, the concentrations being pA = p and pB = 1 - p .  
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We calculate (Sp’), the fluctuations of the concentration in one ‘correlation 
volume’ of size t3, and compare it with the concentration difference between the two 
phases along the coexistence curve ( p l  -p2)’. When (Sp2) / (p l -p2 ) ’  is small, the 
fluctuations are not ‘dangerous’. The critical interval is thus determined by the 
relation 

For the free energy and critical point (Scott 1949) it is convenient to use a lattice 
model with N sites and a lattice constant 1 .  The free energy per site is then: 

F kT kT 
-= UPAPE +-PA In PA+-PB In P E .  
N NA NB 

We assume that the energy of interaction U is independent of T. This corresponds 
to the first case of de Gennes (1977). 

The coexistence line is determined by equating the chemical potentials aF/ap and 
the osmotic pressures in the two phases. The critical point is defined by the relations 
a2F/ap2 = a3F/ap3 = 0. We find that kT, = 2 uNA/(l + a 1/2)2, and pc = 1/(1+ a ‘ I 2 )  

Now consider the difference of concentration between the two phases (p l  - p # .  
For a very small difference ( T  - T,], if the concentration in one phase is p1 = pc+ Sp, 
that of the other phase is p 2 = p c - S p ,  where Sp may be calculated by the relation 
aF/apIp,+ap = aF/aplp,--Gp. The difference of concentration turns out to be: 

where f f  = NA/NB. 

Next we turn to fluctuations. If gAA is the correlation function (gAA= 
( P A ( O ) P A ( r ) ) - P i )  and i A A ( 4 )  is the Fourier transform of gAA, the mean value of the 
fluctuations is (@) = &~4(0)/[~. Thus we have to know ~ A A .  An equivalent approach 
is based on the response function or susceptibility ~ A A  = -gAA/kT. We derive the 
functions through an RPA method following de Gennes (1970). To define a suscep- 
tibility, we introduce weak potentials S4A acting on A and &bB acting on B. 
Under the influence of these potentials, there is a modification of the mean concen- 
trations PA and P B .  If GA, GB, &$A and S ~ B  are the Fourier transforms of pa ,  pB, SC#JA 
and S4B respectively: 

In the first approximation the chains are ideal, i.e. g& = O  and g i A  = 

( 2 1 ~ x 1 -  [(l -e-’)/x]}). We can expand it for small q because for T near T,, [ is 
large and only small q are important. 

But the modification of the concentrations induces a potential: we must replace 
&A by &A + US& + 6 4  and && by S& + USFA + 84 where US& and UScA are 
interaction terms and 86 is a Lagrangian multiplier ensuring that + = 0 
because we always have pA + p ~  = 1 (de Gennes 1970). 

(pANA/kT)fD(&Aq2) where f~ is the Debye function (Debye 1947) ( f ~ ( x ) =  
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Hence 

Thus 

The critical region is then given by (using equations ( l ) ,  ( 3 )  and (4)): 

AT*/Tc= a l / ’ /NA.  

3. Discussion 

Let us assume now that NA is large and that NB is smaller than NA (a >> 1 ) .  Thus the 
concentration pc is small. We can refer to B as the solvent and A as the solute. The 
first step is then to define the 8 temperature of the system. Following Flory (1953) we 
can expand FIN for small PA 

We define 8 as the temperature at which p vanishes. 8 is the temperature at which the 
sign of B changes, at T < 8 the effective interaction favours segregation and demixing 
can occur. At T = 8 the coils are essentially ideal and the correlation length is 
proportional to N’” (the radius of the coils). To know whether the mean field theory 
is applicable in most of the range of interest we have to compare AT* with 8 - T,. 
The theory is acceptable only if AT*/(8 - Tc)<< 1 ,  k8 = 2 l J N ~ / a ,  and 8 - Tc = 
8a1”/(l +a1/2)2 (for large a). Thus 

In conclusion, there are three points. Firstly, when NA = NB = N, A T * / ( 8  - T,) = 
N-’ is very small, and the mean field theory is applicable. We recover de Gennes’ 
result (de Gennes 1977). 

Secondly, when NB is much larger than unity (though NA >> NB),  AT*/(8 - T,) is 
small, and the mean field theory is applicable. The exponents measured experiment- 
ally should be [ = ( T  - Tc)-1’2 and ,y = (T  - T,)-’. 

Lastly, in the case where NB = 1 ,  AT*/($ - T,)= 1 .  Here the mean field theory is 
not correct and we expect Ising exponents. 
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